
ECE 204 Numerical methods

Douglas Wilhelm Harder, LEL, M.Math.
dwharder@uwaterloo.ca
dwharder@gmail.com

Iteration

Introduction

• In this topic, we will
– Describe iteration
– Observe how it can be used to approximate solutions

to algebraic problems
– Describe the fixed-point theorem
– Discuss issues such as the maximum number of iterations and the

tolerances we are willing to accept in our approximations

Iteration

2

Iteration

• The next tool we will use is iteration:
– First, we require mathematical function f, which may

represent a numerical algorithm
– Second, we require an initial value, or initial approximation, x0

• An iteration occurs when start applying f to x0:

• We can repeat this arbitrarily often to produce a sequence of
values

x0, x1, x2, x3, x4, …
– The significance of this sequence depends on f and x0

Iteration

3

()1 0x f x←

()2 1x f x←

()3 2x f x←

Iteration

• The function f may be a simple arithmetic function,
 or it may describe a complex algorithm involving a number
 of steps

• Here is a simple function:
– Even here, depending on the initial value,

 the behavior will change
• We will have initial values 0.1, 1 and 2:

 0.1, 0.01, 0.0001, 0.00000001, 0.0000000000000001, …
 1, 1, 1, 1, 1, 1, 1, 1, …
 2, 4, 16, 256, 65536, 4294967296, 18446744073709551616, …

Iteration

4

()
def

2f x x=

Iteration

• We have already seen one example of iteration

– If x approximates , then is on the other side of

• Consequently, the average of these two should be a better
approximation of , so we define

– Now, x0 = 1.4 has a 1% relative error if approximating
x1 = 1.414285714285714
x2 = 1.414213564213564
x3 = 1.414213562373095
x4 = 1.414213562373095

Iteration

5

2
2
x

2

2

()
def 1 2 1

2 2
xf x x

x x
 = + = + 
 

2

2 1.4142135623730950488≈

Iteration

• Exercise:
– Come up with a similar formula for approximating for

a given positive real number n

Iteration

6

n

No solution is provided, and not on the examination

Fixed-point theorem

Theorem
Given the equation x = f (x) and given an initial value x0,
if the iteration of f starting with x0 converges, then it converges
to a solution of the equation x = f(x)

– Important:
• The function f can be a real-valued function of a real variable
• It can also be a vector-valued function of a vector variable

– In this second case, the initial value must too be a vector

Iteration

7

Fixed-point theorem

• For example, in our previous problem,

Iteration

8

()
def 1

2
xf x

x
= +

1
2
xx

x
= +

1
2
x

x
=

2 2x =

()x f x=

Fixed-point theorem

• We could now write a function to do this for us:
double fixed_point(double f(double x), double x0) {
 while (true) {
 double previous_x0{ x0 };
 x0 = f(x0);

 if (x0 == previous_x0) {
 return x0;
 }
 }
}

double sqrt2(double x) {
 return x/2.0 + 1.0/x;
}

Iteration

9

int main() {
 std::cout.precision(16);
 std::cout
 << fixed_point(sqrt2, 1.4)
 << std::endl;

 return 0;
}

Fixed-point theorem

• We could also author this in MATLAB:
function [x0] = fixed_point(f, x0)
 while true
 previous_x0 = x0;
 x0 = f(x0);

 if x0 == previous_x0
 return;
 end
 end
end

>> format long
>> sqrt2 = @(x)(x/2.0 + 1.0/x);
>> fixed_point(sqrt2, 1.4)
 ans =
 1.414213562373095

Iteration

10

This must be saved to a
file fixed_point.m

Fixed-point theorem

• At the start of this topic, we looked at iterating
– The fixed-point theorem says that if an iteration converges,

 then that iteration converges
 to a solution of x = f (x)

– There are two solutions: 0 and 1
• If –1 < x0 < 1,

 then the iteration converges to 0
• If x0 = 1 or x0 = –1,

 then the iteration converges to 1
• Otherwise, the iteration diverges

Iteration

11

()
def

2f x x=

Diverging sequences

• This leads to our first problem: When do we stop iterating?
– We must parameterize our algorithms to stop iterating

after a given number of iterations
– We must also check to see if the iteration is no longer finite

Iteration

12

Fixed-point theorem

• We could now update our C++ function:
double fixed_point(double f(double x),
 double x0,
 unsigned int const max_iterations) {
 for (unsigned int iterations{0};
 iterations < max_iterations; ++iterations) {
 double previous_x0{ x0 };
 x0 = f(x0);

 if (!std::isfinite(x0)) {
 return NAN;
 }

 if (x0 == previous_x0) {
 return x0;
 }
 }

 return NAN;
}

Iteration

13

Fixed-point theorem

• We could also author this in MATLAB:
function [x0] = fixed_point(f, x0, max_iterations)
 for iterations = 1:max_iterations
 previous_x0 = x0;
 x0 = f(x0);

 if ~isfinite(x0)
 x0 = nan;
 return;
 end

 if x0 == previous_x0
 return;
 end
 end

 x0 = nan;
 return;
end

Iteration

14

>> format long
>> g = @(x)(x^2);
>> fixed_point(g, 1.4, 1000)
 ans =
 nan

Fixed-point theorem

• Suppose instead we start with
– This has a single solution close to x = 0.7391
– Given any x0, then the iteration

of this function f will converge
to that one unique solution

Iteration

15

() ()
def

cosf x x=

Iterating the cosine function

• Let us start with x0 = 0.7:
0.7
0.7648421872844885
0.7214916395975273
0.7508213288394496
0.7311287725733576
0.7444211836271648
0.7354802004059856
0.7415086516600415
0.7374504531501768
0.7401852853967579
0.7383436103510045
0.7395844286953486
0.7387487096620905
0.7393117103380089
0.7389324891697003
0.7391879474695492
0.7390158723904052
0.7391317863671112
0.7390537062865034
0.7391063024073616
0.7390708732270421

Iteration

16

0.7390947388395475
0.7390786627169290
0.7390894918051325
0.7390821972095050
0.7390871109407026
0.7390838009939997
0.7390860306147043
0.7390845287157354
0.7390855404131101
0.7390848589216623
0.7390853179825329
0.7390850087536235
0.7390852170539435
0.7390850767403454
0.7390851712572744
0.7390851075895347
0.7390851504768903
0.7390851215874518
0.7390851410477252
0.7390851279390509

Iterating the cosine function

• If we are applying iteration,
 we don’t usually need 16 significant digits

• We seldom require more than six
– We don’t want to wait forever…

• We will make an assumption:
– If |xn+1 – xn| < εstep, then xn+1

 should also be close enough
to whatever its converging to

• This is not necessarily true,
 but in most cases it is sufficient

Iteration

17

Iterating the cosine function

• Important: this is an absolute tolerance,
 and not a relative tolerance
– If the solution is actually at x = 0,

 then the relative error is not even defined
– You must be aware of what you are expecting the solution

to be to use such techniques

Iteration

18

Fixed-point theorem

• We could now update our C++ function:
double fixed_point(double f(double x),
 double x0,
 double step_tolerance,
 unsigned int const max_iterations) {
 for (unsigned int iterations{0};
 iterations < max_iterations; ++iterations) {
 double previous_x0{ x0 };
 x0 = f(x0);

 if (!std::isfinite(x0)) {
 return NAN;
 }

 if (std::abs(x0 - previous_x0) < step_tolerance) {
 return x0;
 }
 }

 return NAN;
}

Iteration

19

Fixed-point theorem

• We could also author this in MATLAB:
function [x0] = fixed_point(f, x0, step_tolerance, max_iterations)
 for iterations = 1:max_iterations
 previous_x0 = x0;
 x0 = f(x0);

 if ~isfinite(x0)
 x0 = nan;
 return;
 end

 if abs(x0 - previous_x0) < step_tolerance
 return;
 end
 end

 x0 = nan;
 return;
end

Iteration

20

>> format long
>> fixed_point(@cos, 0.7, 1e-6, 1000)
 ans =
 0.739084858921662

0.739085133215161

Summary

• Following this topic, you now
– Understand how iteration can be used to solve analytic problems
– Have been exposed to the fixed-point theorem
– Understand that we must limit the number of iterations

• After all, the iteration may diverge, or take forever to converge
– We must also set the absolute tolerance for our solution

Iteration

21

References

[1] https://en.wikipedia.org/wiki/Iteration
[2] https://en.wikipedia.org/wiki/Fixed-point_theorem

Iteration

22

Acknowledgments

Tazik Shahjahan for pointing out typos.
An anonymous Class of 2025 student who noticed that
my iterative sequence was a geometric sequence!

Iteration

23

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations
use Times New Roman, and source code is presented using Consolas.
Mathematical equations are prepared in MathType by Design Science, Inc.
Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical Gardens in
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/
for more information.

Iteration

24

Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.

Iteration

25

	Iteration
	Introduction
	Iteration
	Iteration
	Iteration
	Iteration
	Fixed-point theorem
	Fixed-point theorem
	Fixed-point theorem
	Fixed-point theorem
	Fixed-point theorem
	Diverging sequences
	Fixed-point theorem
	Fixed-point theorem
	Fixed-point theorem
	Iterating the cosine function
	Iterating the cosine function
	Iterating the cosine function
	Fixed-point theorem
	Fixed-point theorem
	Summary
	References
	Acknowledgments
	Colophon
	Disclaimer

